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Self similar motions of gas subJect to shock by a piston were analyzed by
Sedov [1]. Equations derived there were applied not only to problems con-
cerning pistons [2 to 4], but also to the mathematical analysis of detona-
tion propagation in gases of variable density.

An analysis 1s made below of two-dimensional shock and detonation waves
in gases the density of which varles in accordance with the law p, = ayz,”
(xo 1s the initial coordinate of a particle), and its unit mass heat content
to Q= Q”xo‘ , in contrast to [5 and 6] where ¢ = const .

We also assume that behind the detonation wave there is a piston moving
with a velocity ~ BA1°

The presence of the additional parameter 8 conslderably complicates the
field of integral curves as compared, for example, to the case consldered in
[5], due to the simultaneous inclusion in the analysis of a strong explosion,
a piston, a solution of a dipolar type, a detonation from the free boundary
and of a short shock [7].

The behavlior of integral curves 1s analyzed.

Cases are noted in which the detonation from the free boundary must never-
theless be supercompressed, while in the presence of shock 1t must corre-
spond to the Jouguet point. An exact solution 1s found for the problem of
a short shock in a medium of varylng density for a number of values of w
dependent on vy , thus generalizing the solution of the known case of vy =1.4,
po= const .

1. The motion of a gas behind a strong detonation wave (or shock wave,
when Qo= 0) are defined by the following equations of hydrodynamics

ou 1 dp du 0 po - ~ .
ou . 1 9P u __ 9 P = p, (4 1.1
37 et ol B el TS PP™" = Py (@o)pa”" (%0) (.1

In the following text the subscript , wlll always be used for denoting”
parameter values at the wave front. Boundary conditions for.(l.1) are deter-
mined by the conservatlion laws at the front x*(t)

PoD = pu (D — wy), s = DyDuy
(D — uy)? 1P _ b a3 _dx 9
Al e et e v
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Self-gimilar motions of gas in a medium of varying density 1343

and by the equality of gas and piston velocitles u(0, ¢t) = Voxy » Or in the
case of expansion into vacuum, by the pressure belng equal to zero, p{0,t) =0,

We seek a solution in the form of

u = u,v (), p = psf (2) p = pug (@), = xy/ T«
D
u, = uox*g, Py = aoDouox*25+“’. D= Dox*B- Px = D-g%:%ar*m (1.3)

Boundary conditions {1.2} are satisfied when constants D¢ , ups and g
are related by Expressions

. 27 : U
u — &) = 20Q,, A == LI .
’ (T——i ) Qo Do —uq a4

In the physlcal sense X represents the squared ratlio of the velocity of
sound to the mass flow rate behind the wave front in a coordinate system in
which the front is at rest.

The value of parameter @, 1s assumed to be specified, while X 1s defined
as the eigen number of the boundary value problem with xo= 0O and xo= x,,
i.e. 1s dependent on the piston velocity.

Substituting (1.3) into (1.1) we find the system of equations of dimension-
less functions o df
T L

dx
f=¢%" pu=2B+e0—g0, [fdi=1, v{)=1
Equations (1.5) allow a similarity set. After the change of variables

=) (%)M=(%>Y”%”" (6 =0 +1+2r+28) (16)

— ﬂ)_-}-,Bv:O, kiv_+'r:viz“'q‘1=0
dx dz dz (1.5)

they become
(1~z>.§%=w(z,w>, u—z)%w(z,w), n=lnz, z()=1 wl)=1 (17

Eliminating the variable n , we obtain

dz 1] — — id
el q>_zz{a A48+ (7+ 1) Bw] ‘2?}

b=0+2B8+1—Pw—(@+)wz—Bu, 2, =h

These expressions contain four parameters vy , 8 , w and ) which deter~
mine the solution character.

We shall 1imit the area of variation of these parameters for physical
reasons.

We shall consider detonation and shock waves which satisfy the necessary
stability conditions ¢, + ug > D, ¢20e = TP+, when small perturbations are
catching up with a strong discontinuity front. It follows from (1.4) that
this condition is fulfilled if X 2 1 . On the other hand, we have
» = 2y/{y — 1} , because Qo= 0 . It is known from thermodynamics that
¢, —¢,> 0 , consequently vy > 1 .

The condition for the mass of matter behind the wave front to be finite
stipulates w > — 1 . We note that when g 2 1 , a shock wave cannot detach
itself from the coordinate origin, even after an infinitely long period of
time. Consequently, there exists a self-similar solution when g8 <1 . In
the wave front proximity there is an srea x;< x 5 1 , where uy > O , because
D > 0 . With this, the total mass of gas either moves in the direction of
x>0, or u{x;) =0 . The impulse of the mass of gas moving in the direc-
tion of x > O 1is proporticnal to "' and, because plx, t) = 0 , it
does not diminish with time (see [8),*p.605), therefore, w +8 +1 2 O .

It will be shown in Section 3 that, if in the latter expression the equallity
sign i1s valid, there willl be no continuous solutions in the whole area
defined by O < x <= 1 . We shall therefore assume that w +8 +1> O .
Continucus solutions are also limited by varlations of parameter B 2 fo <

< — 0.5(w + 1) up to the value of B, corresponding to a short shock.

(1.8)
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The area of varlation of =z _and w 1s also limlted. As pressure 1s a
nonnegative parameter, we have 2z = O . Simplifying Equation (1.7) in the
neighborhood of the wave front, where w - 1 and O < dw/dn =w+g +1+0(w-1),
we come to the conclusion that the value of w = 1 must decrease with
decreasing x

We write down the derived limitations
220, v, 1>1,0+1>0
0o+1+B>0 B, I<A<2H/ (v — 1) (1.9)

2, We shall plot the field of integral curves of Equation (1.8). The
1soclines of zeros z,(w) , infinitles z_(w) , and the particular solution
z = 0, all intersect at the following singular points

A(w1=93_¥;—218, 21:0)

B(w2=—2-— o 22_1), C(w3=m(’r—1)+27+28 U 3¢ dc) )

B r—1H(—» wy (28 + ¢ —1)

Point 4 1is always a "saddle" point. For the isocline of infinities

z,= z_(w) , as well as for the slope of the particular solution z,(w) at
point 4 we have

dz _ (1 —Bp dz 1—3+2(1—-3°
T BN+ (018 dw T 2ET 1) (0 2B) (w k1 4+ D)
In the neighborhood of B , Equation (1.8) becomes
Fi.;‘iiil’i/, Yy=2z—2y r=w—uws 7a=/(y-+1)Bz (2.1)
dr cr 4 ey

b=2(1—p), c=1—Pp — (@ -+ 1)z, — 2Pw,z,, e= —w, (@ -+ 1+ Puy)

The singular point B will be a "saddle" goint when ae — dec > 0 ; a
nodal point, when inequality O < £ < (b + ¢)® 1s fulfilled with

Lt = 4(ae — be) + (b +¢)® , and a focal point when £ < O .
The slope of the zero and infinity 1socllines at point p willl be
i | _ (1+1)B P ) (@3B @.2)
dw 2 2y(B—1)’ dw l2 (2B—1) (o 2B)

and the slope of singular solutions are found from (2.1), if y = xr 1is
assumed.

In the neighborhood of (¢ Equation (1.8) takes the form of (2.1), if in
the latter we substitute w, and 2, for w, and Zz, , respectively. For
analyzing this ggoblem at points. g and (¢ 1t is convenelent to express
the term (ae — b¢) in the form

T(ae —be)y = (y — 1) B (1 — B) (w, — wy) (2.3)
2B+ 1 —1)(ee —be)y =20 —1)B (1 — B)w; (ws —w,)

The analysis, with inequalities (1.9) taken into account, is reduced to
the conslderation of ten characteristlic cases shown 1in Pig.l, where curves
of identical physical meaning are denoted by the same letters. Only the
isoclines essential for the analysis of this problem have been shown (by
dotted lines) in Fig.l. Possible directions of solutions are indlcated by
arrows. Points on segment XL correspond to conditions at the wave front,
with points X (the Jouguet point), L(Q = 0), and kX, (supercompressed
detonation) defined by coordinates

Kw=1:2=1), L(w=1,z=__2T1), Ki(w=1, z=212>1)
T_—-
The asymptotic behavior of curves between Lg and X¥ (or K, N) for
x~®, w= 0 1is found from (1.8)
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s~ Jw %~ 0Dy o+ Yo =0 (T + 1)+ 2p + 28 (2.4)

f (0) — const, v (0) — const

These curves, therefore, correspond to a flow pattern in which the piston
moves in the direction of x > 0, or x < 0 , depending on whether it
approaches the z-axis from the left, or right, respectively.

\, -
L
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Curve LQ corresponds to the compression of the nondetonating gas. The
asymptotic behavior of curves between DA 1s alsc defined by {2.4), with
v{0) < 0, The asymptotic behavior of curves BR and ¢F 1is determined by
- K
w

¥4 ~

-a (0)-{1), (O-Fy-1-23) Ky = — @ — 23

f = const, P~ @IV @Dy (2.5)
which means that these correspond to a detonatlion from the closed end, or to
a strong explosion.
When z - , w-w, =~ (w+ 1)/8 , the behavior of curves D , or (P
is defined by
K - .
2 ~27F ve=2B+1—1, Bl -+e) Ky=(o-+1)(1—28)

W — Wy

F—

f~z®1 50, v const < 0 (2.6)
and correspond to a detonatlion from the free boundary.
The asymptotic behavior of XF or X, F for w -~ — o has the form N

2= T_<.1.ﬁ;_£*1 ~ 2B D 8,0,y — g = @B+ (1 —1) (A —B), B0

and corresponds to a discharge into vacuum.

Integral curves corresponding to continucus solutions cannot intersect
line 2z = 1 at any point w = wy , except where wz= wy . We find from
{1.7) that in the neighborhood of & = 1 , w = wy , we have d{w-—w,)}¥dn>0.
This means that, once line g = 1 had been crossed, x begins to grow
again, and x - ® with w - — « , which contradicts physical notions.

Fig.l shows the fileld of integral curves for all posslble cases of varia-
tion of parameters vy , w , 8 and A which satisfy inequalities (1.9)

Case 1. 0.5 s B <1, L= {w+58—2)°— 4{1 +1/y){2s—1){w+28) 2 O .
In accordance with (2.35, (e — be)y< 0, and as also £,= O , therefore,

B 1s the nodal point. The solution emanat from point 5 1s below the
isocline of zeros. The form of Equation (1.7} in the neighborhood of point

B 1is d
dw ) Ay dz
k< . =A kA, —_— —_— -l k== 2.8
dn 1 b, ( dw )a Ay’ <dw)2 8)

Ay =0+ B+ 2Bw,, Ay = (0 + 1 + Buy)w,

Because k < dz,/dw , 1t follows from (2.8) that dw/dn < O , which means
that the solution can be extended in these directions. It will be seen from
Fig.l that the Jouguet point corresponds not only to detonatlon from the open
end, but also to the case of the piston moving with veloclty greater than a
certain given value v(0) = v,> 0 . The asymptotic behavior of curve K¥
is in accordance with (2.4).

Case 2. 0.5<pBp< 1, #£3;< 0. B 1is a focal point. When approaching
this point, the curves intersect line z = 1 at points w # w, , while x
becomes nonsingle-valued. Continuocus solutions, can, therefore, exist only
when the velocity of the compressing piston 1s v(0) > o> O .

Case 3. O<B< 0.5, w+28 20 . 5 is a nodal polnt, because of
wy— Wy< O , while the minimum value of f,= 88{1 — 28) > 0 {for y - 1 and
w =38 -2 .

Case 4, 0 <8< 0.5 ,-6sw+28<0, (2B +y ~1)6 = 2yg(1 —B) . -
5 (a nadal point) moves into the right-hand half-plane. The Jouguet polnt

corresponds to detonation from the free boundary 2.6), as well as to deto-
nation with piston veloeity v(0) < v,2 O

Case 5, 0<pp<0.5, w+28<—58 . Polnts B and ¢ exchange their
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respective places. In accordance with {(2.3), ¢ 1s not a "saddle
and neither 1is 1t a focal polint in view of

ot = (ay by ) — 4 (L 1Y) ady > (ag + 261 — 8agb >0
aq=1-—=32>a = 3zw; >0, q>b=z@+ 1+ Bwy) >0

point,

Therefore, ¢ 1s a nodal point. Possible continuous solutions are bounded
by c?rve) K.Z whicl corresponds to supercompressed detonation from the open
end (2.6).

Case 6. =0, w>0 . Point p has receded into infinity, and ¢
is a "saddle" point. The particular solutlion z= iy, [(y+1)w + 2¢yg= 2y
is unstable, since Xo< 1 . The asymptotic behavior of curves KN is
defined by
w+2¢/ (v+1)

-0, v — const <{0 (2.9)
This case represents detonation from the open end.

2 — Ao, w— — 00, f~zx

Case 7. B8 =0, —1<ws=<O0. (¢ 1s a nodal point. The particular
solution is 2z = Xe=>2 1 , and the detonation, even from the open end (KIM),
is supercompressed.

Case 8. w + 28 2 —B > 0 . The Jouguet point corresponds to detonation
from the free boundary, or to compression by piston with (0, t) > O . The
two singular points p and (¢ are located to the right of line XL , and
it follows from (2.3) that:

a) if w+ 28 =2 —6 and 28 +y — 1> 0, then wy2 w,> 1, 5 1is
a nodal point, and ¢ a "saddle” point. If the equality sign
applies, these two points coincide.

b) if —B<w+28<—6, 28 +y~—1>0, then w,> wy2 1, and ¢
is a nodal point, while 2 a "saddle" point.

c) if w+28=2—-8, 28 +vy—1s0, then w21, B 1is a "sad-
dle" point, and ¢ moves into the lower half-plane.

Case 9. Osw + 28 < ~8>0. B 1is a "saddle" point (0 < w,< 1) . The
separation line from point p runs above 2z = 1 for w = 1 .' Continuous
solutions are, therefore, above the Jouguet point. Detonation 1s supercom-
pressed even from the free boundary (X,pF). In accordance with (2.8?, solu-
tions from B may only be extended in the directions indicated by arrows.
¢ (w,> 1) 1s a-nodal point when 28 +y —1>0 . If 28 +y -1 s O , then
¢ moves into the lower half-plane.

Case 10. w +28< 0, <0 . B 1s a "saddle" polnt, C a nodal
point, w,< O, wy,> 1 . With 28 +y -1> 0, z,> O, when 28+ y—-1<0,
polnt (¢ moves into the lower half-plane.

Depending on the law of varilation of the total gas energy, which 1is pro-
portional to z',, with v = w + 28 + 1 , we obtailn the following character-
istic cases:

a) With v > O, a detonation (supercompressed) from point ¥, 1is
possible with a free boundary K,pF and a piston moving in the
negative direction of axis xX,pB¥N

b) When v = O, curve L@ , which now coincldes with the separation
line (R , corresponds to a strong explosion. Curves below line
LQ correspond to detonation in the presence of a piston which for
t - O absorbs a logarithmically infinite part of the detonating
mixture energy, while the total energy of the gas remains constant.
A discharge into vacuum X,B5F 1s also possible with an infinite
energy (2.8), but in contrast to [7] this takes place when (o> O .

¢) With y < O, curve L@ runs below the separation line (R . The
piston imparts to the gas an infinitely great energy by shock
t = 0), and immediately begins to take it away by reversing its
motlion., At any finite instant of time the energy 1s also finite,
even when Qo > O (curves between LQ and K,B¥). These solutions
bring to mind those of the dipole type for nonlinear thermal con-
ductivity [9].
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d) When v = w< O, point L descends lower and lower wlth decreasing
v s finally reaching point ¥, of line (¢F . In this case there
exists & solution of either the dipcle type {in the presence of a
piston u{0, t) < 0} , or of the impulse type X,2F when the gas
energy 1s Infinitely great.

e) With v < v , there are no continuous solutions In the whole area
defined by 0 s x < 1 , since in this case curves (P Intersect
line =z =1 at points w # w, . We may, however, visuallze a short
shock with energy absorption at the front X > 2v/(y — 1) . With
g > 1 the self-similar sclutions may be considered as a limit for
the non-self-similar sclutions {if, for example, 0 =0, +%x?"8).
It appears that in this case continuous solutions are only possible,
if the piston velocity u(0, ¢t} » v > 0 1s-greater than a certain
specifiled value.

3. Particular solutions of Equations (1.%) may be derived, for example,
in cases of constant wave velocity, exlstence of energy and impulse integrals,
and when the pressure .S a power functlon of x .

Ecuation (1.8} becomes linear for 8 = 0 , and 1s expressed in terms of
? b§ a guadratic form, while the dependence of & on x , derived from
1.7),

is . 2 L
z |72 — Ao |® %‘l/h g Ag [% dz
"’1/“%" p— 2A§ gl Py il B wia i
3.1
=z Re e a2 =1 hp— L
w=ha—n| + M mTearne TzWtUho 3

The integral curves z = z{w} of Egquation {3.1) are 1llustrated in Fig.l
by cases 6 and 7. With w < O , there exists a further particular solution
which iflentically satisfles (1.8), while the definite integral of (1.7) is
of the form

12§
- _lo+w(l —aks) Aok, . ,
s=h, o= |2ERESTR [T amot .
avky 5 v—1 _}_1 { a4
= S| SO 2 = W ot 19
/ T=1 % =1

This solution corresponds to supercompressed detonation from the open end
{2.9). If w = O , then Equation (1.5) has a further solution ¥ = const ,
7 = const which may be matched to {3.2). This case was the subject of
detailed studies in {1, 10 and 11].

With @ + 28 + 1 = 0 , and the piston energy taken intc account, the
expression of the energy integral [5] which, incldentally, also exists in
the case of dipole type of flows, 1s as follows:

iy, Y1 g e 71 Y= 1 3pfe =0
(f=) + o v T Avf 4 7 vofo (3.3)

wtgB
*

w {0, 1} = ugPePus P 0, 1) =aeDyuyf,

By virtue of conditions at the wave front we have Wefo = 1 — 2v/{y—1)r.
With known piston velocit u(0, t) and @, we integrate the second of Equa-
tions (1.5) by using (3.3¥, and obtain a single-valued solution from which
the value of the constant energy of gas is derilved.

A particular solution may also be obtalned by assuml that the pressure
is a power function of the coordinate. It follows from 1.5} that function
F satisfles Equation

d o g 2 d ot he = Bt mwin )/
-d—x—{:z E:{'“ —}—%x- — (@ +26 1)1!\']__ Jf" x_&‘{;{x2,j+ =1L/ »
jw=1  a-ng| =m+ito |
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If /= a*, then, in accordance with assumptions made in [12], it follows
from (3.4) that

@O+ 2B —wE3-Fp—y —0—-28) 2 = pp—0—1)H (@35)
M8t ot 28 =p (3.6)

Equation (3.5) may be satisfied either by equating to zero coefficients
at the various powers of x , or by stipulating the equality of exponents
and equating to zero the sum of coefficients. Condition w > - 1, together
with Equation (3.6) can only be satisfied by the first procedure, therefore

= z¥, o= (1 VR =0 -1, B Sl
f O L = 8oy

, L2 (5.7)

:(.",—27)}»'—7
Ay —2)
With A = 2y/(y — 1) we have an exact solution of the problem of impulse
in a varilable density medium, which is a generalized solution of the known
case [13], when w = O
When 1 = A < 2y/(y — 1) , then (3.7) defines the motlon of a gas in the
presence of detonatlon.

It can be ascertained with the use of (1.6) that with xzﬁ_ A this solu-
tlon passes through point p, Fig.l (Case 10).

When w + B8 + 1 = 0 ; then the second of Equations (1.7) yields the inte-
gral (of impulse [5]), w = 1 , while the first of Equations (1.7) is inte-
grated in the quadratic form

z - by |40 b 2XB— 1)
A oo) RS

This solution corresponds to curves (P 1in Fig.l and cannot be continu-
ous for all O =< x s 1 . In the discontinuity area, such a solution may be

arrived at by, for example, artificially bleeding the gas into a container
[12] which moves in accordance with a stipulated law.

(O]

2B ),
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