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Self similar motions of gas subject to shock by a piston were analyzed by 
Sedov [l]. Equations derived there were applied not only to problems con- 
cerning pistons r-2 to 41, but also to the mathematical analysis of detona- 
tion propagation In gases of variable density. 

An analysis Is made below of two-dimensional shock and detonation waves 
In gases the density of which varies in accordance with the law p,,= QX,," 
(x0 Is the Initial coordinate of a particle), and its unit mass heat content 
to Q = Q,Q$2.' , In contrast to [5 and 61 where Q = const . 

We also assume that behind the detonation wave there is a piston moving 
with a velocity - $'l-@_ 

The presence of the additional parameter P considerably complicates the 
field of Integral curves as compared, for example, to the case considered in 
[5], due to the simultaneous Inclusion in the analysis of a strong explosion, 

a solution of a dipolar type, 
&dPiEioE'short shock [7]. 

a detonation from the free boundary 

The behavior of integral curves is analyzed. 

Cases are noted in which the detonation from the free boundary must never- 
theless be supercompressed, while in the presence of shock it must corre- 
spond to the Jouguet point. An exact solution is found for the problem of 
a short shock In a medium of varying density for a number of values of 
dependent on y , thus generalizing the solution of the known case of y =?.4, 
PO" const . 

1. The motion of a gas behind a strong detonation wave (or shock wave, 
when QO= 0) are defined by the following equations of hydrodynamics 

au 1 aP all -=-__- a PO --‘i at 
-=--, 

poazo’ ax0 at p P,o = P* ("o)P*-y (To) (1.1) 

In the following text the subscript will always be used for denoting' 
parameter values at the wave front. Bo&dary conditions for.(l.;) are deter- 
mined by the conservation laws at the front x*(t) 

P,D = P*(L) - u*), p* = puD[c, 

(D ; %)’ + p$!k_ = ?; _t Qez-,2.?, D=dz, 
dt 
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a:,u by the equality of gas and piston velocities u(0, t) = uOxI , or In the 
case of expansion into vacuum, by the pressure being equal to zero, PfO,t)=O, 

We seek a solution in the form of 

U = u*v (z), P = P*f (4, P = P*Q (519 x= x0/2* 

II* = uo”*p, p* = a,&uox, 2p+w a&o 0 
. D=Dg& p* =----z* 

DO---U0 
(1.3) 

Boundary conditions (1.2) are satisfied when constants De , u. and 4* 
are related by Expressions 

In the physical sense X represents the squared ratio of the velocity of 
sound to the mass flow rate behind the wave front in a coordinate system In 
which the front Is at rest. 

The value of parameter Co Is assumed to be specified, while X is defined 
as the eigen number of the boundary value problem with .zc- 0 and x0- x+, 
i.e. is dependent on the piston velocity. 

Substituting (1.3) into (1.1) we find the system of equations of dlmenslon- 
less functions 

X +L,alv+IJv=o 
dx dx’ ’ 

(1.5) 
f = qyxp, E”=zp+o--p, f (I) = 1,. ZJ (i) = i 

Equations (1.5) allow a similarity set. After the change of variables 

f”‘=($)lx~, (+)‘+L(+)Y,ee+~-l (8=o(T+l)$-ZTf2P) (I.61 

they become 

(1 --Zf 
dz _=~((z,w), 
drl 

Eliminating the variable n , we obtain 

l2.z cp -sL:---( 
dw II, 

rp= 2s 
{ 
P--.1 +V+ (r+ 1)Pwl *} 

~=o+2~$(1-~p)w-(Wfl)~Z-~Ptl;LZ, zJ,+ = k 
(1.8) 

These expressions contain four parameters y , 8 I u) and X which deter- 
mine the solution character. 

We shall limtmit the area of variation of theae parameters for physical 
reasons. 

We shall consider detonatiop and ShQck waves which satisfy the neceaeary 
stability conditions C* -j- II*>, D, c*sP* = TP*, when small perturbations are 
catching up with a strong discontinuity front. It follows from (1.4) that 
this condition is fulfilled if X 2 1 . 
X '_c!y<(x - 1) , because 002 0 . 

On the other hand, we have 
It is lmown from thermodynamics that 

c? * consequently y > 1 . 
Thi condition for the mass of matter behind the wave front to be finite 

stipulates Is>-1. We note that when e z 1 , a shock wave cannot detach 
Itself from the coordinate origin, even after an infinitely long period of 
time. Consequently, there exists a self-similar aolutlon when g < 1 . In 
the wave front proximity there la an area x1< x s 1 , where u s 0 , because 
DrO. With this, the total ma88 of gas either moves In the direction of 
X>O, or ulx,) - 0 . The Impulse of the maas of gas moving In the direc- 
tion of x > 0 is proportional to &l+s and, because pfx, t) 2 0 , it 
does not diminish with time (see [8],*p.605), therefore, u) + 8 + 1 k 0 . 
It will be shown in Section 3 that, If in the latter expression the equality 
sign is valid, there will be no continuous solutions In the whole area 
defined by 0 5 .X Z. 1 a We shall therefore assume that UI + e + 1 > 0 . 
Continuous solutions are also limited by variations of parameter B 2 Bo< 
< - 0.5(m + 1) up to the value of g 0 corresponding to a short shock. 
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The area of variation of z and w Is also limited. As pressure is a 
nonnegative parameter, we have‘s s 0 . 
neighborhood of the wave front, where 

Simplifying Equation (1.7) in the 
w - 1 and 0 < dur/dn = w+@ +ltO(~-I), 

we come to the conclusion that the value of WSl must decrease with 
decreasing x . 

We write down the derived limitations 

z>o, w<l, r>l, o+ I>0 

0 + It B > 0, B < 1, 1 f h -<2-f! (v - I) (1.9) 

2. We shall plot the field of Integral curves of Equation (1.8). The 
lsocllnes of zeros to(w) lnflriitles i,(w) and the particular solution 
EEO, all Intersect at the following slngulab points 

A ( wl = 0 + 2P 
p-1’ 

z1 = 0 1 
B ( wz=-2- o 

-9 
2TCf - I3 

B 
z2=1 , ) (J ( w3= ~(T----1)+2T+2P 

(T---)(l-BP) ’ --3 = wz(“pi_ y-1) 1 
Point A 

I,- a,(w) , 
Is always a WsaddleW point. For the lsocllne of Infinities 

point A 
as well as for the slope of the particular solution z1 (w) at 

we have 

%x3 - (1 - PP dz I-_8+ ‘“(I- 9” 

-XT- 
-r - 

G’P--1)(~+33)(~+1+P) ’ dw (YP-l)(o-;-1!3)(2L:~j.l-tj3) 

In the neighborhood of B ? Equation (1.8) becomes 
_ _ ar+by, dr/ y=z--2, r=w-w2uz, Ta = (r+l)PQ (2.1) 

b = 2 (1 - fi;I 
cr + ey 
c = 1 - fJ - (0 + 1) z2 - 2Bwzzz, e = -w*(O + 1 $ fiw~.q) 

The singular point B will be a "saddle" golnt when ae - bc > 0 ; a 
nodal point when inequality 0 < L < (b + o) Is fulfilled with 
L- 4(ae - 50) + (b + o)~ , and a focal point when L<O. 

The slope of the zero and Infinity lsoclines at point B will be 

2 I2 = (7 + 1) P d%3 (0 +'3P) P 

2r(P--1)' 
--e 
dw 2 (a3 - 1) (0 + a3) 

(2.2) 

an;G; slope of singular solutions .are found from (2.1), If y = KF Is 
. 

In the neighborhood of C Equation (1.8) takes the form of (2.1), If In 
the latter ue substitute w, and x3 for wp and x2 , respectively. For 
analyzing this roblem at points. B 
the term (ae - k) In the form 

and C It Is convenelent to express 

T (ae - bc)3 = (Y - 1) B (1 - P) (~3 --WA (2.3) 

(2P + 7 - 1) (ae - W3 = 2 (v - 1) P (1 - Ww3 (w3 -WA 

The analysis, with Inequalities (1.9) taken Into account, Is reduced to 
the consideration of ten characteristic cases shown In Flg.1, where curves 
of Identical physical meaning are denoted by the same letters. Only the 
laocllnes essential for the analysis of this problem have been shown (by 
dotted lines) In Flg.1. Possible directions of solutions are Indicated by 
arrows. Points on segment XL comes 
with points X (the Jouguet point), 

ond to conditions at the wave front, 

detonation) defined by coordinates 
L Q P I 0), and K1 (supercompressed 

K(w=l:.z=l), L w=l, ZC-5 , 
1 T-1 ) 

K~(w=t, z=h>l) 

The asymptotic behavior of curves between LQ and KN (or KIN) for 
z-m.J w + 0 Is found from (1.8) 
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3 _ Jl0 1-a cv z-"w+l) , r(~+1)CC=W(r+1)+2y+28 (2.4) 

f (O)-, const, v (0) 4 const 

These curves, therefore, correspond to a flow pattern in which the piston 
moves in the direction of x > 0 , or x<o, depending on whether It 
approaches the z-axis from the left, or right, respectively. 
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Curve LQ corresponds to the compression of the nondetonating gas. The 
asymptotic behavior of curves between 
U(Of < 0 , 

D?? is also defined by (2.4), with 
The asymptotic behavior of curves B? and CR is determined by 

KI Z=- 
W 

which means that these 
a strong explosion. 

_ x-~ (oi li 
(w -r_ y -j- ‘) /IT1 rz - (I) - “p 

f -3 const, v cy zbi 1) (2-l) __f (J (2.5) 

correspond to a detonation from the closed end, or to 

When .x-m, w-rw, I-(ut+l)/~ , the behavior of curves @ , or W 
Is defined by 

zr=K2_-2 , -8 
w - wa 

~E=2fi-+~--i, p (1 -I- E) Ii-:! = (w + 1) (I- zp, 

f-3 O+l--zO, v-3 con&< 0 

aid correspond to a detonation from the free boundary. 

The asymptotic behavior of KF or K,F for w -t - = has the form (2.7) 

z = T ‘I-; 8) _ .(1-P) (Y-l), f -29 _+ 0, v cv _ ~p,4=o-tP3-1+(r--1)(1-P),P<0 

and corresponds to a discharge Into vacuum. 

Integral curves corresponding to continuous solutions cannot intersect 
line r=I atanypolnt w=w, 

'8 
except where %-ma * We find from 

(1.7) that in the neighborhood of = I 
This means that, once line I - 1 had be& rrk%d: 

we have d(w-~,)~/dn~O. 
x begins to grow 

again, and X-m with w - - - , which contradict8 physical notions. 

Fig.1 shows the field of integral curves for all possible cases of varia- 
tion of parameters y , w , a and X which satisfy Inequalities (1.9) 

Case 1. 0.5 i g < 1 - (UJ i5f3- 2)2- 
In accordance with (2.31, $L - 2x5) < 0 

4(1+1/~)(~-1)(~+~) 2 0 * 
and as also l,s 0 , therefore, 

B la the nodal point, The solutloz emakt from point B is below the 
lsocllne of zeros. The form of Equation in the neighborhood of Point 

kdw=A1+kAz, 
*q 

Al =--, 
AZ 

(2.8) 

A,=@+BfzSw,, A, = (0 + 1 + @up) “a 

Because k < aa_/dw , it follows from (2.8) that dw/dq < 0 , which means 
that the solution can be extended In these directions. It will be Been from 
Fig.1 that the Jouguet point corresponds not only to detonation from the open 
end, but also to the moving with velocity greater than a 
certain given value The asymptotic behavior of curve KN 
1s in accordance with 

Case 2. 0.5 c $ < 1 , I,< 0 _ B is a focal point. When approaching 
this point, the curves intersect line I = 1 at points w # w, , while x 
becomes nonslngld-valued. Continuous solutions, can, therefore, exist only 
when the velocity of the compressing plston is U(0) > De> 0 . 

Case 3. 0<$-=8.5, uJ+2820. P Is a nodal point, because of 
ma- ws< 0 while the minimum value of La- Be{1 - 2@) > 0 (for Y - 1 and 
W-38- 21 * 

Case 4. 
B (a nodal p%t~ io% into the right-hand half- 
corresponds to detonation. from the free boundary 2.6), as well as to deto- 
nation with piston velocity v(O) i v12 0 . 

Case 5. O<@<O.!j,wi2,9<-b. Points B and C exchange their 
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respective places. In accordance with (2.3)) C Is not a "saddle" point, 
and neither is it a focal point In view of 

.x: . i = (ul + b, -1 cl)2 - 4 (1 + 1 / y) crIbI > (q + Zb,)’ - f&b, > 0 

‘1 = 1 - p > a1 = jzp3 > 0, c1 > b, = 33 (0 + 1 + /3~3) > 0 

Therefore, C is a nodal point. Possible continuous solutions are bounded 

%dC:1;:e6). 
Xl, _ which corresponds to supercompressed detonation from the open 

Case6. g=O, cu>O. 
is a "saddle' point. 

Point P has receded Into infinity, and C 
The particular solution z- X0, [(y +l)lu + 2y]A,= 2y 

is unstable, since A,< 1 . The asymptotic behavior of curves KM Is 
defined by 

z + a,, w-_,--00, f-r 
o+2Y,'(u+l)+ 0, 

v+coIlst<O (2.9) 

This case represents detonation from the open end. 

Case7. 8 '0, -1<wrO. C is a nodal point. The particular 
solution Is s e 102 1 , and the detonation, even from the open end (KIM), 
is supercompressed. 

Case 8. The Jouguet point corresponds to detonation 
from the frez b+o%d&,goz Fo'compression by piston with ~(0, t) > 0 . The 
two singular points B and C are located to the right of line XL , and 
It follows from (2.3) that: 

a) If w + 2g z - b and 26 + y - l> 0 , then w21 w,> 1 , B is 
a nodal point, and C a "saddle" point. If the equality sign 
applies, these two points coincide. 

b) If - g <w+2g<-6, 2g + y - 1 > 0 , then w3> ws2 1 , and C 
is a nodal point, while P a "saddle" point. 

c) If w+2gz-g, 
dle" point, and 

2g+y-l<O, then wa2 1 , B Is a "sad- 
C moves Into the lower half-plane. 

Case 9. 0~w+2B~-8>0. R is a llsaddlell uolrit (0 < w=< 1 j . The 
separation line from point .B runs-above z = 1 for w 1'1 .* Eontinuous 
solutions are, therefore, above the Jouguet point. Detonation is su ercom- 
pressed even from the free boundary (K,BF). In accordance with (2.8 P . solu- 
tions from B may only be extended in-%he directions indicated bv arrows. 
C (w,> 1) Is aenodal point when 28 + y - 1 z 0 . 
C moves Into the lower half-plane. 

If 28 + y - 1-r 0 , then 

Case 10. w+28<0, 8'0. B Is a "saddle" point, C a nodal 
point, w,< 0 f z+>l. With 28 + y - 1 > 0 , z3> 0 , when 
point C mOves Into the lower half-plane. 

2@+y-lr0, 

Depending o", the law of variation of the total gas energy, which Is pro- 
portional to x *, with v - w + 28 + 1 , we obtain the following character- 
istic cases: 

a) With v > 0 , a detonation (supercompressed) from point K, is 
possible with a free boundary K,BF and a piston moving in the 
negative direction of axis xK,BN . 

b) When v = 0 , curve LQ which now coincides with the separation 
line CR , corresponds t; a strong explosion. Curves below line 
LQ correspond to detonation in the presence of a piston which for 
t - 0 absorbs a logarlthmlcally Infinite part of the detonating 
mixture energy, while the total energy of the gas remains constant. 
A discharge Into vacuum K,BF Is also possible with an Infinite 
energy (2.8), but In contrast to [7] this takes place when 0.9 0 . 

cl With v < 0 , curve LO runs below the separation line CR . The 
piston Imparts to the gas an Infinitely great energy by shock 
t = 0), and Immediately begins to take It away by reversing Its 
motion. At any finite instant of time the 
even when 40 > 0 (curves between 

ener y Is also finite, 
LQ and K,BN . These solutions 7 

bring to mind those of the dipole type for nonlinear thermal con- 
ductivity [q]. 
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d) When v I M< 0 , point L descends lower and lower with decreasing 
v I finally reaching point FX of line CR . In this case there 
exists a solution of either the dipole type (in the presence of a 
piston u(a, tf < 0) , or of? the impulse type .KIV when the gas 
energy 1s infinltely great. 

With v < v0 , there are no continuous solutions in the whole area 
defined by p d x 5 1 , since in this case curves CD intersect 
line t = 1 at points w jrl we . We may, however, visualize a short 
shock with energy absorption at the front k > 2y,/(v - 2) . With 
@ > 1 the self-similar solutions may be considered as a limit for 
the non-Self-similar sclutions (if, for example, 0 = 4x+Qox~oB). 
It appears that in this t%.se continuous solutions a-e only possible, 
if the piston velocity k(O, t) z b > 0 is greater than a certain 
Specified value. 

31 Particular solutions of Equations (1.5) may bc cicrSiued, for example, 
in cases of constant wave velocity, existence of energy and impulse integrals, 
and when the pressure _s a power function of r , 

Equation (1.8) becomes linear for 8 = 0 , and is expressed in terms of 
while the dependence of z on x , derived from 

The integral curves 2 = z(m) of Equation (3.1) are illustrated in Fig.1 
by cases 6 and 7. there exists a further particular solution 
which identically s!iE%its'(?.b), while the definite integral of (1.7) is 
of the form I--zg -^ 

3;z x,, 
1-G 

t ct=w+l j 

‘2YXr r-l 
(9.2) 

jCiF=, 
u =(T 

27 
- 1) ho 

ZYfl r+i, 
T----1 

This solution corresponds to supercompressed detonation from the open end 
then Equation (1.5) has a further solution U I const , 

('*'!!&S"t' wluhi:h'mky be matched to (3 2) f- 
detailed sf;udies in [I, 10 and 113. * * 

Thls case was the subject of 

With ut + 26 + 1 = 0 , and the piston energy taken into account, the 
expression of the energy integral [5] which, incidentally, also exists in 
the case of dipole type of flows, IS as follOWS: 

(3.3) 

By virtue of conditions at the wave front we have E%jb = 1 - Z.v/(y-1)k. 
With known piston velocit 
tions (1.5) by using (3.3 3 

~(0, t) and & we integrate the second of Equa- 
, and obtain a single-valued soluti.3rn from which 

the value of the constant energy of gas is derived. 

A particular solution may also be obtained by assumi that the pressure 
is a power function of the coordinate. It follows from 1.5) that function 
f satisfies Equation 
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If j= xi*, then, In accordance with assumptions made In [12], it fo11oWS 
from (3.4) that 

(0 + 28 - }L)(Y? -1 p --y - &) - 28) $J~++~,'.iZl p (IL - w - 1) $'-w-: (:'1.5) 

J+l+ Xp t- 0 + 27 = 11 (X.6) 

Equation (3.5) may be satisfied either by equating to zero coefficients 
at the various powers of x , or by stipulating the equality of exponents 
and equating to zero the sum of coefficients. Condition UJ > - 1, together 
with Equation (3.6) can only be satisfied by the first procedure, therefore 

With i - 2v/(v - 1) we have an exact solution of the problem of Impulse 
In a variable ble&lty hedlum, 
case [ 133, when uJ=0. 

When 1 -i A < 2y,?(y - 1) , 
presence of detonation. 

It can be ascertained with 
tion passes through point 8, 

When u) + B + 1 - 0 j then 
gral (of Impulse [5]), u) = 1 
grated in the quadratic form 

which is a generalized solution of the known 

then (3.7) defines the motion of a gas In the 

the use of (1.6) that with xZ8- A this solu- 
Fig.1 (Case 10). 

the second of Equations (1.7) yields the lnte- 
, while the first of Equations (1.7) Is lnte- 

,o=_2”1(a -~ 1) 
2pT--i- 

This solution corresponds to curves CP In Fig.1 and cannot be contlnu- 
ous for all 0 s x i 1 . In the discontinuity area, such a solution may be 
arrived at by, for example, artlflclally bleeding the gas into a container 
[12] which moves In accordance with a stipulated law. 
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